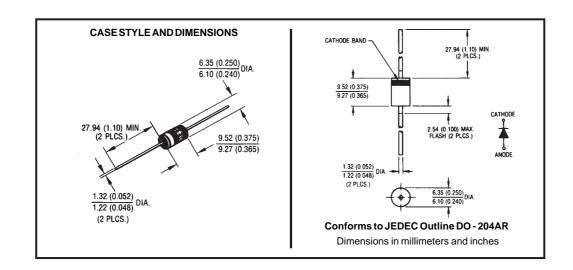
International TOR Rectifier

80SQ... SERIES

SCHOTTKY RECTIFIER

8 Amp


Major Ratings and Characteristics

Characteristics		80SQ	Units
I _{F(AV)}	Rectangular waveform	8	А
V _{RRM}	range	35 to 45	V
I _{FSM}	@ tp = 5 µs sine	2400	А
V _F	@ 8 Apk, T _J =125°C	0.44	V
T _J	range	-55 to 175	°C

Description/Features

The 80SQ axial leaded Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 175° CT_{.I} operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	80SQ035	80SQ040	80SQ045
V _R Max. DC Reverse Voltage (V)	05	40	45
V _{RWM} Max. Working PeakReverse Voltage (V)	35	40	45

Absolute Maximum Ratings

Parameters		80SQ	Units	Conditions		
I _{F(AV)} Max.AverageForwardCurrent *See Fig. 5		8	А	50% duty cycle @ T _C = 119° C, rectangular wave form		
I _{FSM}	Max.PeakOneCycleNon-Repetitive	2400	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	SurgeCurrent*SeeFig.7	380		10ms Sine or 6ms Rect. pulse		
E _{AS}	E _{AS} Non-Repetitive Avalanche Energy		mJ	T _J =25 °C, I _{AS} =1.6 Amps, L=7.8 mH		
I _{AR}	AR Repetitive Avalanche Current		Α	Currentdecayinglinearlytozeroin1µsec		
				Frequency limited by T _J max. V _A	=1.5xV _R typical	

Electrical Specifications

Parameters		80SQ	Units	Conditions		
V _{EM}	Max. Forward Voltage Drop (1)	0.53	V	@ 8A	T,= 25 °C	
	* See Fig. 1	0.60	V	@ 16A	1 ₃ = 25 C	
		0.44	V	@ 8A	T, = 125 °C	
		0.55	V	@ 16A	1, = 120 0	
I _{RM}	Max. Reverse Leakage Current (1)	2	mA	T _J = 25 °C	\/ - rated \/	
	* See Fig. 2	15	mA	T _J = 125 °C	$V_R = \text{rated } V_R$	
C _T	Max. Junction Capacitance	900	pp $V_R = 5V_{DC}$, (test signal range 100Khz to 1M)		est signal range 100Khz to 1Mhz) 25 °C	
L _s	Typical Series Inductance	10.0	nΗ	H Measured lead to lead 5mm from body		
dv/dt	Max. Voltage Rate of Change	10,000	V/ µs			
	(Rated V _R)					

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	80SQ	Units	Conditions
T _J	Max.JunctionTemperatureRange	-55to175	℃	
T _{stg}	Max.StorageTemperatureRange	-55to175	°C	
R _{thJL}	Max.ThermalResistanceJunction toLead	8.0	°C/W	DCoperation *See Fig. 4 1/8inchleadlength
R _{thJA}	TypicalThermalResistance, Junction to Air	44	°C/W	
wt	ApproximateWeight	1.4(0.049)	g(oz.)	
Case Style		DO-20	4AR	JEDEC

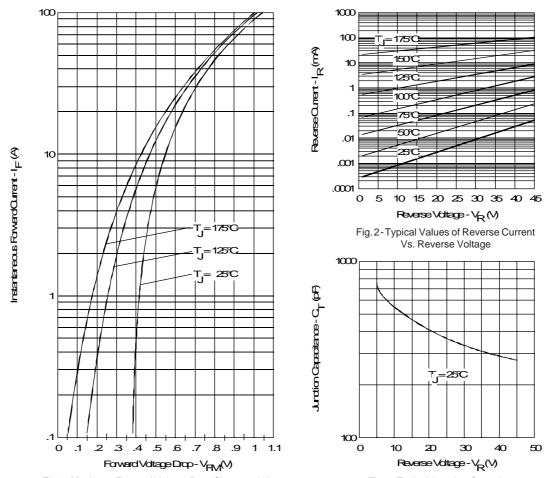


Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

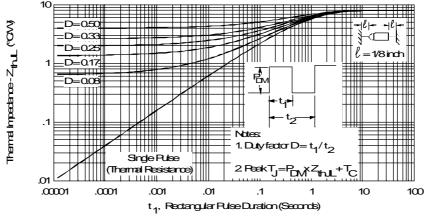


Fig. 4-Maximum Thermal Impedance Z_{thJL} Characteristics

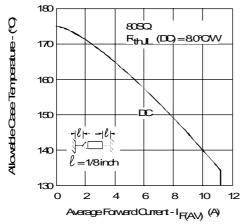


Fig. 5-Maximum Allowable Case Temperature Vs. Average Forward Current

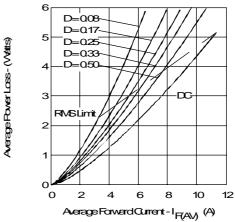
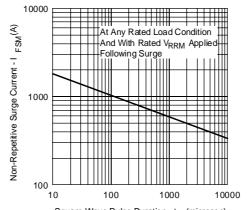



Fig. 6-Forward Power Loss Characteristics

 $\label{eq:square_pulse} \mbox{Square Wave Pulse Duration - t}_{p} \mbox{ (microsec)} \\ \mbox{Fig.7-Maximum Non-Repetitive Surge Current} \\$

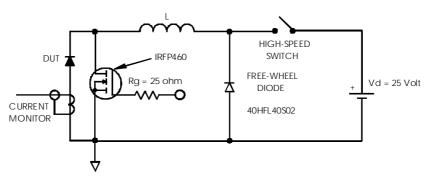


Fig. 8 - Unclamped Inductive Test Circuit